(-3x+6)=(6x^2-5x+5)

Simple and best practice solution for (-3x+6)=(6x^2-5x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-3x+6)=(6x^2-5x+5) equation:



(-3x+6)=(6x^2-5x+5)
We move all terms to the left:
(-3x+6)-((6x^2-5x+5))=0
We get rid of parentheses
-3x-((6x^2-5x+5))+6=0
We calculate terms in parentheses: -((6x^2-5x+5)), so:
(6x^2-5x+5)
We get rid of parentheses
6x^2-5x+5
Back to the equation:
-(6x^2-5x+5)
We get rid of parentheses
-6x^2-3x+5x-5+6=0
We add all the numbers together, and all the variables
-6x^2+2x+1=0
a = -6; b = 2; c = +1;
Δ = b2-4ac
Δ = 22-4·(-6)·1
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{7}}{2*-6}=\frac{-2-2\sqrt{7}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{7}}{2*-6}=\frac{-2+2\sqrt{7}}{-12} $

See similar equations:

| x-x-3=-3 | | 7s+67=109 | | 2x+70=9x+14 | | 7s=67=109 | | 7{1-8n}=32 | | 5-y/4=10 | | 10u+6=u+33 | | 1/2(x−50)=3+4x | | -5c+12=2 | | 17/13=12/u | | -21=5{8y-4} | | 9x4=5x+5 | | (2x+3)+(6x+25)=180 | | −11b+7=40 | | 4w-6=10+2w | | 1.5-0.03x=-1.29 | | 5+2x=2(−x+8)−27 | | 5+2(4x+3)=-1 | | -16=4x12 | | 2y+24=5y-6 | | 2r-3/5=4r+1/6 | | -8s+5+6=-5 | | 12/v=7/3 | | X+12+25=180,x | | 3x=3=6 | | 4(-2x-1)=-34 | | 12v+4=8v+20 | | 8x^2-32x-16=0 | | 9w-80=6w-32= | | 16=m/7+9 | | 3X2+x-252=0 | | 2z-4=-5z+24 |

Equations solver categories